LC 2015: PAPER 2

Question 6 (25 marks)
Question 6 (a)
The centroid of a triangle is the intersection of the medians.
A median is a line from a vertex to the midpoint of the opposite side.
Using a compass, bisect lines $A B$ and $A C$ to get the midpoints D and E of these lines.

Draw medians $B E$ and $C D$.
The centroid G is the intersection of these medians.

Marking Scheme Notes

Question 6 (a) [Scale 5C (0, 2, 4, 5)]
2: - Some relevant calculation

- One side bisected
- One midpoint indicated

4: - One median drawn

Question 6 (b)

The transversal line theorem

If three parallel lines cut off equal segments on some transversal line, then they will cut off equal intercepts on any other transversal.

GIven: $k\|l\| m$ and $|D E|=|E F|$.
Prove: $|A B|=|B C|$

Construction: Draw a line $D^{\prime} F^{\prime}$ through B parallel to $D F$.

Proof:

$D E B D^{\prime}$ is a parallelogram $\Rightarrow|D E|=\left|D^{\prime} B\right|$
$E F F^{\prime} B$ is a parallelogram $\Rightarrow|E F|=\left|B F^{\prime}\right|$
$\therefore\left|D^{\prime} B\right|=\left|B F^{\prime}\right|$ (because $|D E|=|E F|$)
$\left|\angle A D^{\prime} B\right|=\left|\angle B F^{\prime} C\right|$ (alternate angles)
$\left|\angle A B D^{\prime}\right|=\left|\angle C B F^{\prime}\right|$ (vertically opposite)
$\therefore\left|\triangle A D^{\prime} B\right|=\left|\triangle B C F^{\prime}\right|$
$\therefore|A B|=|B C|$

Marking Scheme Notes
Question 6 (b)
Diagram/Given: [Scale 5B (0, 2, 5)]
2: - Effort at Diagram or Given
Construction: [Scale 5B (0, 2, 5)]
2: - Construction attempted (diagram and/or description)

Proof: [Scale 10C (0, 4, 8, 10)]

4: - More than one critical step omitted but still some substantial work of merit
8: - Proof completed with one critical step omitted

